

COURSE RECORD	
Code	ECE558
Name	Dynamics and Control of AC Drives
Hour per week	3 + 0 (Theory + Practice)
Credit	3
ECTS	7,5
Level/Year	Graduate
Semester	Spring
Туре	Elective
Location	TBD
Prerequisites	EE 308 Electric Machines and Drives, ECE*** Introduction to Electric Drive
	Systems
Special Conditions	N/A
Coordinator(s)	Dr. Burak Tekgün
Webpage	N/A
Content	1. AC machine model development,
	2. Complex variable analysis of induction and synchronous machines,
	3. Digital simulation of electric machines and drives,
	4. DQ models for power converters and current regulation,
	5. Field oriented (vector) control of AC machines,
	6. Direct torque control,
	7. Small signal dynamic analysis of AC machines.
Objectives	1. To provide the methods used for modeling the AC machines via winding functions.
	To provide the knowledge for modeling AC machines using complex vectors and do transformations.
	3. To introduce the techniques used for power converter modeling.
	4. To provide the principles of field oriented (vector) control, types of
	field oriented control and their implementation.
	5. To introduce the flux weakening operation of vector controlled AC machines
	6. To introduce direct torque control of AC machines.
	7. To develop and analyze the small signal model of AC machines.
Learning	L01 Understand coupled circuit modeling of AC machines
Outcomes	LO2 Understand the complex variable analysis of AC machines
	LO3 Understand the principle of direct and quadrature axis representation,
	stator, rotor reference frames
	LO4 Learn how to simulate AC electric machines and drives
	LO5 Understand the principles of current regulation.
	LO6 Understand the principles of field oriented control
	LO7 Understand the current and voltage limits of AC drives and flux (or
	field) weakening operation.
	LO8 Understand the direct torque control technique
	LO9 Understand the development of the small signal model of AC machines.
Requirements	Matlab / Simulink or similar simulation software.
Reading List	Textbook: "Vector Control and Dynamics of AC Drives," D. W. Novotny, T. A.
	Lipo, 1996, Oxford – Clarendon Press.
	Additional Material:
	1. "Analysis of Electric Machines and Drive Systems," P. C. Krause, O.
	Wasynczuk, S. D. Sudhoff, 2002, IEEE Press.
	 "Vector Control of Three-Phase AC Machines," N. P. Quang, J. A. Dittrich, 2008. Springer.
Ethical Rules and	Students are not allowed to collaborate on homework assignments exams and
Course Policy	project reports. Project reports will be written and graded individually.

LEARNING ACTIVITIES

Activities	Number	Weight (%)
Lecture	14	90%
Presentations	2	10%

Total 100

ASSESSMENT		
Evaluation Criteria		Weight (%)
Homework Assignments		30%
Project Assignments & Presentations		35%
Final Exam/Submission		35%
	Total	100%

For a detailed description of grading policy and scale, please refer to the website https://goo.gl/HbPM2y section 28.

COURSE LOAD			
Activity	Duration (hour)	Quantity	Work Load (hour)
In class activities	3	16	48
Homework Assignments	5	11	55
Group work	3	12	36
Research (web, library)	5	16	80
Required Readings	5	16	80
Pre-work for Presentation	8	2	16

General Sum 315

ECTS: 7,5 (Work Load/25-30)

CONTRIBUTION TO PROGRAMME OUTCOMES*

	11120	1011	0 1 110	ard in in	12 0 0		10							
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	P013	P014
L01	5	0	0	0	0	0	0	0	0	0	0	0	0	0
L02	5	5	0	0	0	0	3	0	0	0	0	0	0	0
L03	0	5	5	5	5	5	4	0	0	0	0	0	0	0
L04	0	0	0	5	5	5	5	4	4	3	3	0	0	0
L05	0	0	0	0	0	0	0	0	0	5	5	0	0	0
L06	0	0	0	0	0	0	0	0	0	0	5	5	5	0
L07	0	0	0	0	0	0	0	0	0	0	0	0	5	0
L08	0	0	0	0	0	0	0	0	0	0	0	0	0	5
L09	0	0	0	0	0	0	0	0	0	0	0	0	0	5

* Contribution Level: 0: None, 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

WEEKLY SCHEDULE

W	Торіс	Outcomes
1	Coupled circuit analysis of AC machines, calculation of inductances and	L01, L02
	winding functions.	
2	Introduction to electrical radian notation, three phase idealized machine	LO2, LO3
	model, vector notation, voltage equations for 3 phase sinusoidal machine	
3	Voltage equations referred to the stator and rotor side ant their graphical	L03
	interpretations. Two phase model of 3 phase sinusoidal machine.	
4	Quadrature and direct axis definition, transformations and inverse	L03, L04
	transformations, matrix notations, rotation transformation, machine	
	equations in arbitrary reference frame, power equations for complex	
	vectors.	
5	Electromechanical energy conversion, torque expressions, mechanical	L03, L04
	system equations, salient pole (wound field) synchronous machine.	

6	Steady state solutions using complex instantaneous variables, steady state torque equations.	L03, L04
7	Constant speed transients, forced and natural solutions, current source and voltage source excitations.	L02, L04
8	Trapped flux equivalent circuit, transient analysis of AC machines in state variable form	L04
9	Per unit system, magnetic saturation and introduction to system simulation, dq converter modeling (VSI)	L04
10	Inverter modeling (CSI), inverter – machine (VSI) model, inverter – machine (CSI) model, current regulation on AC machines, PWM-VSI current regulations, hysteresis current regulation.	LO4, LO5
11	Ramp comparison current regulator, stationary frame dq current regulator, synchronous frame dq current regulator, space vector modulation, torque control in AC machines, steady state field oriented control (FOC) equations, indirect and direct FOC.	LO4, LO5, LO6
12	Torque production and voltage equations in FOC induction machines. Differences between the FOC in IM and SM (wound field), detuning effects if indirect FOC and its dynamics	L06
13	FOC using air gap flux, field weakening in IM for FOC, Interactions of current and voltage limits, synchronous reluctance machines, Interior permanent magnet (IPM) machines constant power operation of IPM machines.	L06, L07
14	Direct torque control and its implementation, small signal analysis of induction machines.	L08, L09